- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0005000000000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Momose, Atsuki (5)
-
Ren, Ling (5)
-
Das, Sourav (2)
-
Duan, Sisi (1)
-
Liu, Shengqi (1)
-
Malkhi, Dahlia (1)
-
Shi, Elaine (1)
-
Shoup, Victor (1)
-
Wan, Jun (1)
-
Xiang, Zhuolun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 2, 2025
-
Malkhi, Dahlia; Momose, Atsuki; Ren, Ling (, ACM)
-
Momose, Atsuki; Das, Sourav; Ren, Ling (, ACM)
-
Wan, Jun; Momose, Atsuki; Ren, Ling; Shi, Elaine; Xiang, Zhuolun (, ACM)
-
Momose, Atsuki; Ren, Ling (, Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security)Dynamic participation support is an important feature of Bitcoin's longest-chain protocol and its variants. But these protocols suffer from long latency as a fundamental trade-off. Specifically, the latency depends at least on the following two factors: 1) the desired security level of the protocol, and 2) the actual participation level of the network. Classic BFT protocols, on the other hand, can achieve constant latency but cannot make progress under dynamic participation. In this work, we present a protocol that simultaneously supports dynamic participation and achieves constant latency. Our core technique is to extend the classic BFT approach from static quorum size to dynamic quorum size, i.e., according to the current participation level, while preserving important properties of static quorum. We also present a recovery mechanism for rejoining nodes that is efficient in terms of both communication and storage. Our experimental evaluation shows our protocol has much lower latency than a longest-chain protocol, especially when there is a sudden decrease of participation.more » « less
An official website of the United States government
