skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Momose, Atsuki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 2, 2025
  2. Dynamic participation support is an important feature of Bitcoin's longest-chain protocol and its variants. But these protocols suffer from long latency as a fundamental trade-off. Specifically, the latency depends at least on the following two factors: 1) the desired security level of the protocol, and 2) the actual participation level of the network. Classic BFT protocols, on the other hand, can achieve constant latency but cannot make progress under dynamic participation. In this work, we present a protocol that simultaneously supports dynamic participation and achieves constant latency. Our core technique is to extend the classic BFT approach from static quorum size to dynamic quorum size, i.e., according to the current participation level, while preserving important properties of static quorum. We also present a recovery mechanism for rejoining nodes that is efficient in terms of both communication and storage. Our experimental evaluation shows our protocol has much lower latency than a longest-chain protocol, especially when there is a sudden decrease of participation. 
    more » « less